
Transfer Function Development 
The Thermometer[1] 

 
Assumptions:  
 

Lumped - All thermal resistance resides in fluid film surrounding bulb 
Parameter - All thermal capacity is in the mercury and it is uniform throughout 
Model - The glass does not expand 
 - Thermometer is initially at steady state 
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 A = Area of bulb [=] ft2 
 x = Fluid Temp [=] °F 
 y = Hg Temp [=]°F 

 C = Heat capacity of Hg [=] 
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 m = Mass of mercury [=] lbm 
 t = time [=] hr 
 
It is not convenient to work in terms of absolute temperature, instead solve the problem in terms 
of deviations 
 
For t ≤ 0 Thermometer is at steady state 
 
So 
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If 
 X = x - xs 

 Y = y - ys 
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Taking the LaPlace Transform 
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Where 
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"  = Time Constant [=] hours 
 
This is a: 

First Order System 
First Order Lag 
Single Exponential Stage 
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This is the most commonly used form of a sensor 
 
Transfer functions represent a very useful form for describing a system. Since they are a 
description that does not include either the input or the output, they represent a general method 
for capturing the behavior of the system.  
 
In the case of the above problem, X(s) is our input and Y(s) our output. This allows us to write: 
 
 Y(s) = X(s) • G(s), 
 
implying that for any input we can compute the system response by multiplying the transfer 
function, G(s), by the input. 
 
Step Response 
To examine the response of the thermometer to a step input in temperature, we would note that 
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where: A = the magnitude of the step change in temperature [=] °F 
 
Then: 
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we can rearrange this equation into the format 
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The solution requires that partial fractions are used, so: 
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Where: C1 = A 
 C2 = -A 
 
The solution is  
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Note that this solution has two components. The “A•1” portion represents the steady-state 
response that occurs after long time periods. The “

! 

A•"e
" t
# ” portion represents the transient 

response that dominates right after the input is applied. 
 
When this system is created in Simulink, the resulting model appears below: 
 

  
 
In this model, τ = 2. The result from running the model is: 
 

  
 
This model only considers a single value for τ. However, is would be useful to compare the 
effect of different values for τ in the same scope. This can be accomplished by building multiple 
versions of the model, varying τ. The outputs from the models are input into a single scope using 
the “Mux” block. In the model below, I have also included the input into the transfer function on 
the scope for comparison. 
 

  



Running this version of the model yields: 
 

  
 
The bottom (green) curve shows the response for τ = 2, while the uppermost curve (purple) 
shows the response for τ = 0.5. Horizontal (yellow) line at y = 1 is the input unit step function. 
 
Some terms associated with !  and A systems response to a step change 
 

1. The time constant and a definition of steady-state 
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2. System DC gain = steady–state gain for the case where the output has a final value 
 

3. At 0=
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t   1=
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4. The response of any step change may be determined from the response for “A” by 

multiplying the result for “A” by 
A

desired  



Sinusoidal Input 
 
This input is represented by the equations  
 
 X = 0 for t < 0 
And 
 X = A • sin (ϖ • τ) for t ≥ 0 
 
Where: A = amplitude 
 ϖ = frequency [=] radians 
 
From the table, the Laplace transform of this equation is 
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Recalling that the transfer function approach allows us to state 
 
 Y(s) = X(s) • G(s) 
 
And, for the thermometer our transfer function is 
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Solving this equation using partial fractions yields 
 

 

! 

Y(t) =
A"

# 2 •" 2
+1

$ 

% 
& 

' 

( 
) e

* t # *
A•" •#

# 2 •" 2
+1

$ 

% 
& 

' 

( 
) cos(" • t) +

A

# 2 •" 2
+1

$ 

% 
& 

' 

( 
) sin(" • t) 

 
Noting the trigonometric identity 
 
 p • cos A + q • sin A = r • sin (A + θ) 
 
where  
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we have 
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This equation has two components, a transient component that goes to 0 
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and a steady-state component 
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Building this model in Simulink yields 
 

  
 
Note that, in order for the input to remain at 0 for t ≤ 0, the sinusoidal input has been multiplied 
by a unit step function occurring at t = 0. In this model, τ = 4, ϖ = 1 Hz, and A = 1. The output 
from the system is: 
 

  
 
There are a couple of important factors to note regarding the steady-state output of the equation. 
They are: 
 

1. The output frequency of the steady-state frequency is the same as that of the input. 
 



2. The ratio of the output amplitude to the input amplitude is: 
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 This is always less than 1. Thus, the amplitude of the output is attenuated. 
 
3. The attenuation of the input increases as the frequency, ϖ, increases. Thus, processes 

with the format 
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act as low pass filters 

 
4. The output lags behind the input by an angle | φ |. Since φ is always negative, phase 

lag always occurs. (φ > 0 is phase lead) The phase lag can never exceed π/2, but 
approaches it asymptotically 

 



Transfer Function Development 
A Surge Tank 

 
Surge tanks are used to smooth out an irregular flow. They are used in a variety of systems. For 
example, a basin might be designed to catch the flow of water off of a parking lot after a storm. 
Since parking lots are impervious to rain, even a relatively small storm generates a large volume 
of water capable of overflowing a drainage ditch. The basin contains that volume of water 
releasing it at a controlled rate. 
 
Another example might be a reservoir designed to regulate the flow of sewage into a waste 
treatment plant. Since the generation of waste is irregular, the extreme example being the 
infamous Superbowl flush that occurs at halftime, the surge tank allows the plant to be designed 
for a flow rate that is closer to the average than it is to the maximum. 
 

  
 
Assumptions: The desired output for the system is the head required to handle the flow 

into the tank 
 The tank has a uniform cross-section 
 The output from the tank has a constriction (valve) limiting its flow 
 The resistance to flow generates a linear relationship between head and 

flow 
 
Then: q0 = the volumetric flow rate [=] volume/time 
 R = the resistance of the constriction 
 h = the head created in the tank 
 A = the cross-sectional area of the tank 
 
We can write: 
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Analysis of this system is based on a mass balance where 
 
 Mass Flow In – Mass Flow Out = Rate of Mass Accumulation in the Tank 



 
To relate the mass balance to the flow rate, we use the density of the fluid, ρ. The density is 
assumed to be constant. Then the mass balance becomes: 
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Dividing by ρ yields 
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Since we are trying to relate the flow in, q(t), to the head, h, we will convert q0 to head, yielding: 
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As with the previous problem, we will be working with the process in terms of deviation from 
steady-state. Therefore, we assume that the tank is at steady-state prior t = 0. At steady-state 
 

 

! 

dh
s

dt
= 0  

 
so 
 

 

! 

qs "
hs

R
= 0 

 
To convert the analysis to deviation term, we subtract the steady-state version of the equation 
from the general form of the equation, yielding 
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Next, we define our deviation variables 
 
 Q = q - qs 

 
 H = h - hs 
 
And note that at steady-state for t < 0, 
 
 H(0) = 0 
 
And rewrite our differential equation to 
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We can rearrange this equation into the standard transfer function format 
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where τ = A • R 
 
This transfer function is essentially the same as that found for the thermometer, only the 
variables have been changed. 
 
Impulse Input  
 
Problem Statement 
A water retention pond is associated with the parking lot of a football stadium. The pond has 
dimensions of 10 m x 5 m and is of uniform cross section. A stream with a flow rate of 1 m3/min 
continuously flows through the pond, keeping the pond partially full. The drain pipe exiting the 
pond has a resistance of 1/20 m/(m3/min). At t = 0, a cloud burst lasting a minute occurs, 
dumping an additional 40 m3 of water onto the pond and the parking lot. 
 
From this description, we can generate a transfer function 
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Where: R = 1/20 [=] m/(m3/min) 
 A = 5 • 10 = 50 [=] m2 
 τ = A • R = 2.5 [=] 1/min 
 
so 
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Because a large volume of water is added to the pond over a short period of time, we can treat 
the addition as an impulse function with a magnitude of 40. In this case, 
 
 Q(s) = 40 • 1 



 
So 
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Rearranging into the format of the Laplace transforms table 
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Taking the inverse Laplace transform yields 
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Note that the exponential decay occurs from a maximum value of 0.8 meters of additional height 
of the water level. 
 
While the we approximated the cloudburst as an impulse function to simplify the analytical 
solution, This simplification is not beneficial when we build the model in Simulink. We can 
model the system as shown below: 
 

  
 
The pulse of rain entering the pond is created by inputting a step function of height 40 and one 
minute later subtracting another step function of height 40. The output from the scope is  
 

  
  
The yellow line is the input pulse and the pink line is the additional height of the pond. If we 
enlarge this plot, clipping the input pulse, we have 
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