
Second Order Systems 
A Proportional Controller 

 
 

In this problem we will consider a controlled second order process. The type of controller that we 
will use is known as a proportional controller, because the controller’s response is proportional to 
the system error. A block diagram for the system is shown below. Note that the gain of the 
controller is not yet specified. One of the goals of this problem will be to consider the response of 
the system to different values of kA. 
 

 
In this loop the forward path is determined by multiplying the two blocks together to get 
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where kA = the gain of the proportional controller 
 
The transfer function of the feedback portion of this diagram is “1.” The is the equivalent of a very 
“fast” sensor, in comparison to the rest of the process. Then, the “open loop gain” for this diagram 
is 
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The overall transfer function for a negative feedback loop is then computed as 
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If the process is a positive feedback loop, the overall transfer function is: 
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Since our process is a negative feedback loop 
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Simplifying the equation yields: 
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This transfer function is now in the standard format for second order processes, which is 
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where: 

N
!  = the “undamped” or “natural” frequency of the process (cycles/minute) 
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 !  = the damping ratio [=] dimensionless 
 
For the our problem 
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If we consider the process’ response to a unit step change, we multiply G(s) by R(s) to get 
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The time domain solution to a second order polynomial in the denominator has three possible 
solutions, depending on the roots of the polynomial. If we consider the general case, solving for 
“s” using the quadratic equation yields 
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where: a = 1 
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ωn must be ≥ 0, since you can not have a negative frequency. In addition, ωn ≠ 0. Therefore, the 
behavior of the system is dependant on the value of ζ.  
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" = 0# undamped sinusoid (purely imaginary roots) 
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0 < " <1#  damped sinusoid resulting (complex roots) 
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" =1# critically damped (real and equal roots) 
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" 2 >1# overdamped response (real roots) 
 



Since, in our problem, ζ is variable and a function of kA, we can control the response of the system 
by varying kA. The plot below shows the system’s responses for a variety of values of ζ (0.5, 1, 
1.5, 2, 2.5 from top to bottom).  
 

  
 

Critically Damped Solution 
For example, if we want the system to respond to the step change input as quickly as possible 
without any overshoot, then we would like the system to be critically damped. This is the light blue 
curve in the plot above For this case, 
 
 ζ = 1 
 
and (by the way) 
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In practice, you would seldom design for critically damped, since minor instrumentation errors are 
likely to result in the overshoot. If overshoot must be avoided, you would probably design for a 
slightly overdamped system. 
 
How long would it take for our process to reach steady-state, based on our kA. For a 2nd order 
system, 
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As with simple first order processes, this process never comes to steady-state, so we must define 
“steady-state.” Typically steady-state is defined as either 4 • τ (98% of the value at t = ∞) or 5 • τ 
(99% of the value at t = ∞). In this problem, we will use 4 ! ’s as our definition of tsteady-state. Then, 
the time to steady state is 4 minutes. 

Overshoot Solutions 
The above case describes the fastest tsteady-state without overshoot. However, if overshoot is 
acceptable, we can reach tsteady-state more rapidly. For example, compare response for ζ = 0.5 (the 
purple line) to the response for ζ = 0.5 (the light blue line) in the plot of varying values of ζ. In this 
type of problem 
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This overshoot is measured at the first (highest) peak in the process’ response. The location of this 
peak is determined based on the damped natural frequency, ωd, of the system. This frequency 
differs from the undamped natural frequency, ωn, of the process based on the equation 
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The maximum value occurs at  
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